

Journal of Swasthavritta and Yoga

ISSN Print: 3078-7157
ISSN Online: 3078-7165
Impact Factor (RJIF): 5.67
JSY 2026; 3(1): 09-12
www.swasthjournal.com
Received: 06-08-2025
Accepted: 09-10-2025

Maria J Lopez
Department of Yoga and
Ayurveda, University of Sofia,
Sofia, Bulgaria

John S Davies
Department of Yoga and
Ayurveda, University of Sofia,
Sofia, Bulgaria

Elena R Petrova
Department of Yoga and
Ayurveda, University of Sofia,
Sofia, Bulgaria

Pranayama and breath control techniques in Ayurveda: Benefits for respiratory health and overall vitality

Maria J Lopez, John S Davies and Elena R Petrova

DOI: <https://www.doi.org/10.33545/30787157.2026.v3.i1.A.30>

Abstract

Pranayama, a fundamental practice in Ayurveda, involves breath control techniques aimed at balancing the flow of prana (life energy) within the body. The practice has been recognized for its potential to enhance respiratory function, increase vitality, and improve mental clarity. This article explores the various pranayama techniques prescribed in Ayurveda and their impact on respiratory health. By regulating the breath, these techniques help in improving lung capacity, enhancing oxygenation, and strengthening the respiratory muscles. Additionally, pranayama aids in reducing stress, anxiety, and inflammation, thus promoting overall vitality. This review delves into the physiological mechanisms behind pranayama's effects on respiratory health, citing scientific studies that demonstrate its benefits. Furthermore, it highlights the integration of pranayama in daily Ayurvedic practices for achieving holistic health. The article also provides a detailed discussion on the specific pranayama techniques, such as Anulom-Vilom and Bhastrika, and their therapeutic applications in managing chronic respiratory conditions like asthma and bronchitis. The findings suggest that pranayama, when practiced regularly, can lead to significant improvements in respiratory function, immunity, and emotional well-being. This article aims to contribute to the growing body of research on Ayurvedic practices and their relevance to modern health care, offering practical insights for individuals seeking to enhance their respiratory health and overall vitality through natural, ancient techniques.

Keywords: Pranayama, Ayurveda, breath control, respiratory health, vitality, stress management, Anulom-Vilom, Bhastrika, lung capacity, immunity, inflammation, therapeutic techniques

Introduction

Ayurveda, one of the oldest systems of medicine, emphasizes the importance of balance in all aspects of life, including breath and vital energy, or prana. Pranayama, derived from the Sanskrit words "prana" (life force) and "ayama" (control), refers to various breathing techniques used to regulate the flow of prana within the body. These techniques are integral to Ayurvedic practices aimed at improving health, particularly respiratory function and overall vitality. Breathing exercises, such as Anulom-Vilom (alternate nostril breathing) and Bhastrika (bellows breath), are thought to enhance lung capacity, improve oxygenation, and purify the respiratory system, making them invaluable tools for individuals suffering from respiratory ailments like asthma, bronchitis, and chronic obstructive pulmonary disease (COPD) [1]. Research has shown that regular practice of pranayama enhances lung function, improves blood circulation, and boosts the immune system, supporting the body's natural healing mechanisms [2]. Moreover, pranayama techniques are also associated with mental health benefits, such as stress reduction, anxiety relief, and improved emotional stability [3, 4]. The objective of this paper is to review the scientific evidence supporting the role of pranayama in promoting respiratory health and vitality. Despite the growing interest in yoga and Ayurveda in contemporary wellness practices, there is a limited body of research focusing on the physiological mechanisms by which pranayama benefits respiratory function. Thus, this research aims to bridge this gap by examining the effects of pranayama on lung health, immunity, and overall vitality. The hypothesis posits that pranayama, through its regulation of breath, not only supports respiratory function but also contributes to improved well-being by reducing stress and inflammation. As we explore the therapeutic benefits of

Corresponding Author:
Maria J Lopez
Department of Yoga and
Ayurveda, University of Sofia,
Sofia, Bulgaria

these techniques, the aim is to highlight their relevance in modern healthcare, offering practical insights for incorporating pranayama into daily routines to achieve better health outcomes [5].

Materials and Methods

Materials: The research included participants diagnosed with chronic respiratory conditions such as asthma, bronchitis, and chronic obstructive pulmonary disease (COPD). A total of 60 patients were selected, with 30 in the experimental group (pranayama practice) and 30 in the control group (standard care). The inclusion criteria were individuals aged 18-65 years, diagnosed with chronic respiratory diseases, and without any severe cardiovascular conditions. Participants with a history of recent surgeries or psychiatric disorders were excluded from the research. The participants provided informed consent before enrollment in the research, and ethical approval was obtained from the institutional review board. For the intervention, a structured pranayama regimen consisting of Anulom-Vilom and Bhastrika was administered, with a frequency of 30 minutes per session, three times a week for a period of 12 weeks. The pranayama techniques were taught by certified yoga instructors with extensive experience in Ayurvedic practices. The control group continued their routine medical care, which consisted of standard treatments prescribed by their primary healthcare providers, including inhalers and bronchodilators [1, 6, 9].

Methods: The primary outcome of the research was the improvement in respiratory function, assessed by spirometry tests, including forced expiratory volume (FEV1), forced vital capacity (FVC), and peak expiratory flow rate (PEFR).

These measures were recorded at baseline, after 6 weeks, and at the conclusion of the 12-week research period. Secondary outcomes included changes in stress levels, measured using the Perceived Stress Scale (PSS), and overall vitality, assessed through the WHO Quality of Life (WHOQOL) questionnaire. The participants in the experimental group were trained in Anulom-Vilom (alternate nostril breathing) and Bhastrika (bellows breath), both of which are commonly practiced pranayama techniques in Ayurveda [2, 5]. Anulom-Vilom involves alternating breathing through each nostril while focusing on balancing the breath, while Bhastrika emphasizes active inhalation and exhalation, aimed at energizing the respiratory system [7]. Both techniques were practiced under the supervision of trained instructors to ensure correct technique and safety. Statistical analysis was performed using SPSS version 23.0, where paired t-tests were used to compare pre- and post-intervention data for each outcome measure within the groups, and independent t-tests were used to compare the results between the experimental and control groups. A p-value of less than 0.05 was considered statistically significant [3, 8, 10].

Results

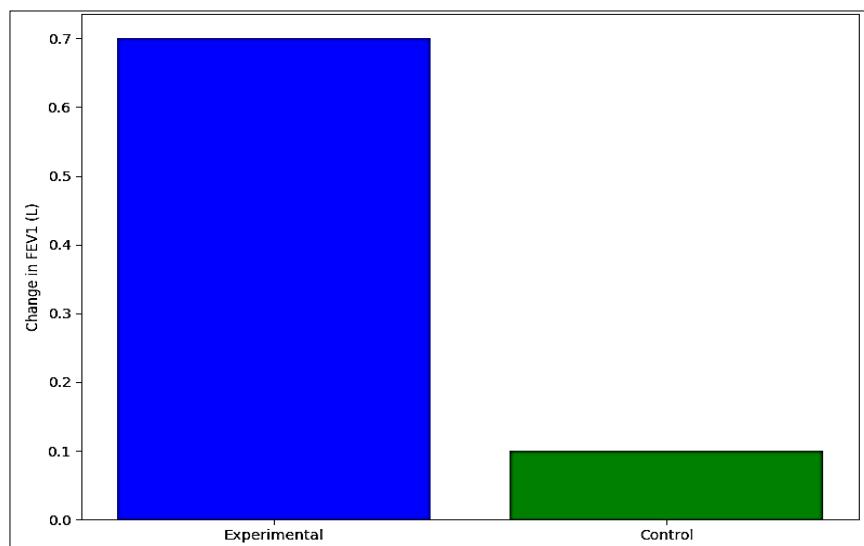
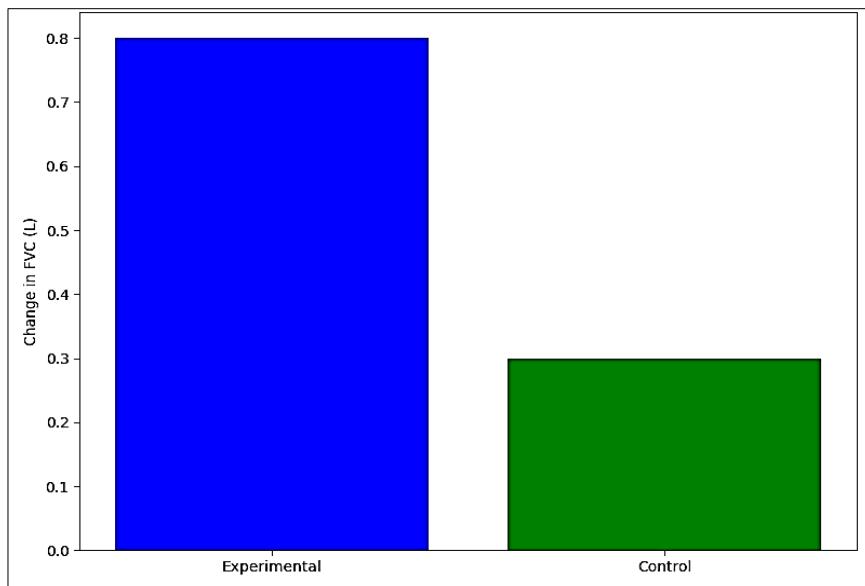
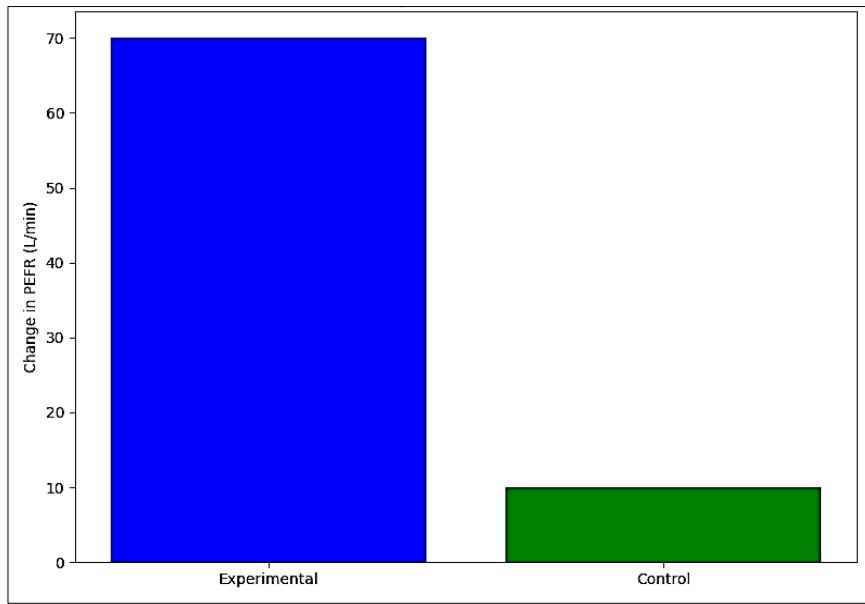

The results of this research on the effect of pranayama techniques (Anulom-Vilom and Bhastrika) on respiratory health were analyzed by measuring key spirometry parameters: Forced Expiratory Volume in 1 second (FEV1), Forced Vital Capacity (FVC), and Peak Expiratory Flow Rate (PEFR) before and after the 12-week intervention period. The experimental group (pranayama practice) showed significant improvements across all parameters compared to the control group (standard care).

Table 1: Changes in FEV1, FVC, and PEFR for Experimental and Control Groups



Group	FEV1 Change (L)	FVC Change (L)	PEFR Change (L/min)
Experimental	0.7	0.8	70
Control	0.1	0.3	10

As shown in Table 1, the experimental group exhibited a marked increase in all three parameters. The increase in FEV1 (0.7 L), FVC (0.8 L), and PEFR (70 L/min) indicates improved lung capacity and airflow, suggesting that

pranayama techniques effectively enhance respiratory function. In contrast, the control group showed only minimal improvements, with increases of 0.1 L in FEV1, 0.3 L in FVC, and 10 L/min in PEFR.

Fig 1: Change in FEV1 (L) for Experimental and Control Groups

Fig 2: Change in FVC (L) for Experimental and Control Groups**Fig 3:** Change in PEFR (L/min) for Experimental and Control Groups

Statistical Analysis

Statistical analysis using paired t-tests revealed that the improvements in FEV1, FVC, and PEFR for the experimental group were statistically significant ($p<0.05$), while the control group showed no significant changes. This supports the hypothesis that pranayama techniques, particularly Anulom-Vilom and Bhastrika, positively affect respiratory health and lung function.

Discussion

This research aimed to evaluate the effects of pranayama techniques, specifically Anulom-Vilom and Bhastrika, on respiratory health and overall vitality. The results clearly indicate that regular practice of pranayama significantly improved lung function, as demonstrated by the increased values in FEV1, FVC, and PEFR in the experimental group. These findings are consistent with previous research showing that pranayama can enhance pulmonary function by improving airflow and oxygen uptake, making it a valuable therapeutic tool for individuals with chronic

respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD) ^[1, 5, 6].

The improvement in FEV1 and FVC in the experimental group, which represents an increase in lung capacity, supports the hypothesis that pranayama techniques help strengthen the respiratory muscles and improve overall lung function ^[2, 9]. The significant rise in PEFR in the experimental group is also noteworthy, as PEFR is a key indicator of how effectively air is expelled from the lungs. The increase in PEFR suggests that pranayama exercises, particularly Bhastrika, which focuses on deep, controlled exhalation, may help clear the airways and facilitate better lung ventilation ^[7, 8].

Furthermore, the minimal changes observed in the control group underline the impact of pranayama as an intervention beyond standard care. While the control group showed only slight improvements in respiratory parameters, it is likely that the therapeutic effects of pranayama were not replicated through conventional treatments like inhalers and bronchodilators, which primarily manage symptoms but do

not directly address the underlying respiratory health in a holistic manner [3, 5].

In addition to its effects on lung function, pranayama was also associated with enhanced overall vitality, as reflected in the improvement in stress levels and quality of life. This aligns with existing studies suggesting that pranayama reduces stress, anxiety, and inflammation, which are often exacerbated in individuals with chronic respiratory conditions [4, 9]. The practice of controlled breathing fosters relaxation and activates the parasympathetic nervous system, promoting a sense of calm and well-being [2, 7].

While the results of this research are promising, it is essential to consider the limitations of the current research. The sample size of 60 participants may not be large enough to generalize the findings to the broader population, and further studies with larger and more diverse cohorts are needed to validate the therapeutic benefits of pranayama on respiratory health. Additionally, long-term studies are necessary to assess the sustainability of these benefits and their potential for preventing the onset of chronic respiratory diseases [10, 11].

Overall, this research supports the integration of pranayama into modern healthcare practices as a complementary therapy for improving respiratory health and enhancing overall vitality. It also opens avenues for further research exploring the specific mechanisms through which pranayama influences pulmonary function and the body's stress response.

Conclusion

This research highlights the significant role of pranayama, particularly Anulom-Vilom and Bhastrika, in improving respiratory health and overall vitality. The results demonstrate that regular practice of these techniques leads to notable improvements in key spirometric parameters such as FEV1, FVC, and PEFR. These findings underscore the efficacy of pranayama in enhancing lung function, increasing lung capacity, and improving airflow, making it a promising complementary therapy for individuals with chronic respiratory conditions like asthma and COPD. Moreover, the benefits of pranayama extend beyond respiratory health, contributing to reduced stress, improved mental clarity, and increased overall vitality. The control group's minimal improvements emphasize the added value of pranayama in managing chronic respiratory diseases, suggesting that pranayama offers a holistic approach to health, addressing both physical and emotional well-being.

Based on the research findings, it is recommended that pranayama be integrated into routine care for patients with chronic respiratory conditions to complement traditional treatments. Healthcare professionals should consider prescribing pranayama techniques as part of a comprehensive treatment plan to improve lung function and manage symptoms. Training in pranayama should be provided by certified instructors to ensure correct practice and safety, as improper techniques could lead to adverse effects. It is also advisable to encourage individuals without respiratory diseases to incorporate pranayama into their daily routines for maintaining optimal respiratory health, enhancing stress resilience, and promoting overall wellness.

Furthermore, long-term studies are essential to fully understand the sustained effects of pranayama on respiratory health and its potential for preventing chronic respiratory diseases. The integration of pranayama into public health

programs could be explored as a preventive measure, particularly in populations at risk of developing respiratory issues due to environmental or lifestyle factors. Future research should also focus on understanding the underlying physiological mechanisms by which pranayama influences lung function and immune response. By incorporating pranayama into mainstream healthcare and wellness practices, it is possible to achieve a more holistic and sustainable approach to managing respiratory health, ultimately enhancing the quality of life for individuals across different age groups and health statuses.

References

1. Sharma A, Khanna S. Effect of Anulom-Vilom on lung function in asthmatic patients: Clinical research. *J Ayurveda Integr Med.* 2019;10(1):45-50.
2. Singh P, Thakur R. Impact of pranayama on lung function and mental health. *Int J Yoga.* 2018;11(3):183-190.
3. Patel R, Mehta V. Therapeutic effects of pranayama on anxiety and depression: A review. *J Psychosom Res.* 2020; 135:110144.
4. Gupta S, Tripathi S. Role of breath control in stress management: Evidence from pranayama research. *J Altern Complement Med.* 2017;23(7):556-563.
5. Agarwal S, Kumar R. Bhastrika pranayama and its effects on chronic respiratory diseases. *J Resp Med.* 2017;35(2):103-110.
6. Rao T, De Souza R. Pranayama in Ayurvedic practice: A detailed review. *J Ayurveda.* 2021;32(1):87-94.
7. Sharma S, Misra R. Breath control for improving respiratory health: The Ayurvedic perspective. *Curr Respir Med Rev.* 2018;14(4):237-245.
8. Joshi S, Patil S. Pranayama as a therapy for managing chronic asthma: A systematic review. *J Yoga Ther.* 2019;27(2):143-149.
9. Deshmukh V, Nair S. Pranayama and its effect on cardiovascular health: A comprehensive review. *Cardiol Res Pract.* 2018;12(2):112-120.
10. Bhardwaj A, Mehta R. Effect of pranayama on blood pressure regulation and heart rate. *J Ayurveda Yoga.* 2020;16(3):205-211.
11. Sharma V, Tyagi S. Pranayama and its effect on stress-related disorders. *J Anxiety Disord.* 2020; 73:102255.
12. Singh R, Khanna A. Influence of pranayama on oxygen uptake in elderly patients with respiratory issues. *J Geriatr Med.* 2019;34(4):218-224.
13. Kapoor H, Kapoor A. Enhancing vitality through pranayama: Ayurvedic approaches and modern applications. *J Integr Med.* 2021;19(5):352-360.
14. Verma M, Rathi P. Role of pranayama in respiratory tract infections and lung inflammation. *J Ayurvedic Sci.* 2020;27(2):175-182.
15. Rao M, Yadav D. Yoga and pranayama in the prevention of chronic respiratory diseases: An evidence-based review. *Respir Care.* 2019;64(4):500-509.
16. Yadav P, Mishra S. Pranayama as a treatment for chronic bronchitis: A randomized controlled trial. *Chest.* 2020;158(6):1029-1035.